

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

VOLODYMYR DAHL EAST UKRAINIAN NATIONAL UNIVERSITY

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRONICS

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Admitted to defending

Head of the CSE department

______________ I. S. Skarha-Bandurova

«____»____________ 2020

UNDERGRADUATE PROJECT (WORK)

EXPLANATORY NOTES

ON THE TOPIC:

Android application "Handbook for Celebration"

Bachelor’s degree

Speciality 122 Computer Science

Knowledge
(code and name of the specialty)

Supervisor:

E. V. Shcherbakov

Occupational safety consultant:

(signature)

(initials, surname)

Ya. O. Krytska

Applicant for higher education:

(signature)

(initials, surname)

M. O. Babayeva

Group:

(signature)

(initials, surname)

KH-16d

Severodonetsk 2020

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

VOLODYMYR DAHL EAST UKRAINIAN NATIONAL UNIVERSITY

Faculty Information technology and electronics

Department Computer Science and Engineering

Educational degree Bachelor

Specialty 122 Computer Science

 (code and name)

APPROVED:

a.i. head of the CSE department

S.O. Safonova

«_____» _____________2020

TASK

FOR THE UNDERGRADUATE PROJECT (WORK)

Maya Orazmuradovna. Babayeva
(Full Name)

1.Theme of work Android application "Handbook for Celebration"

Project manager (works) Assoc. Prof., Dr. Shcherbakov E.V.

Approved by order of the higher educational institution from "30" 04 2020 № 78/15.15

2.Deadline for applicants for higher education 08.06.2020

3. Initial data to work Used software: Android Studio for mobile application

development in Java and XML

4. Contents of the settlement and explanatory note (list of questions required to

develop):

 1) Analysis of the subject area

2) Selection and justification of software for the system development

3) System development

4) Labor protection

5) Conclusions

5. List of graphic material (with exact indication of obligatory drawings)

Electronic posters

6. Consultants of project section (works)

Section
Surname, initials and position

of the consultant

Signature, date

Task issued Task

accepted

Occupational Health Y.O. Krytska, Senior lecturer

7. Date of issuance of the task

 Supervisor

 (signature)

 Applicant for higher education

 (signature)

SCHEDULE PLAN

№

s/n

The name of the stages of the diploma

project (work)

Term of execution of project

stages (works)

Note

1
Inspection of literature behind the topic

of the diploma

5.05.20-09.05.20

2 Study of literary sources 11.05.20-15.05.20

3 Development of the technical task 16.05.20-19.06.20

4 Designing to design 21.05.20-22.05.20

5 Program Structure 23.05.20-29.05.20

6 Development of the mobile app 31.05.20-05.06.20

7 Execution of an explanatory note 06.06.20-16.06.20

Applicant for higher education M. O. Babayeva

(signature)

(initials, surname)

Supervisor E. V. Shcherbakov

4

ABSTRACT

Explanatory note to the diploma project (work) of the bachelor degree in

Computer Science of V. Dahl East Ukrainian National University: 90 pages, 10 figures,

4 tables, 22 references.

Object of development: Handbook for Celebration

Goal: design and development Android application "Handbook for Celebration".

The project is completed:

1. Project development with Android studio using Java and XML.

2. Construction and Implementation of the application.

3. A mobile application for choosing the best gift for any occasion has been

developed.

Practical value, scope of work: the mobile application provides users with menu

of functions, such as gift selection, holiday decoration advice, as well as sections with

horoscope information.

THE MOBILE APPLICATION, ANDROID, SERVICE, HANDBOOK FOR

CELEBRATION, MARK-UP XML AND JAVA LANGUAGES

Conditions for obtaining a BSc project: V. Dahl EUNU, 59-a Central Avenue,

Severodonetsk, 93400.

5

Content

INTRODUTION……………………………………………………………………......8

 1. ANALYSIS OF MEANS OF DEVELOPING APPLICATIONS FOR ANDROID

OS………………………………………………………………………………………9

1.1 Domain Overview…………………………………………………………………..9

 1.2 Java programming language…………………………………………………….10

1.3 Android Studio…………………………………………………………………….12

1.4 XML markup language……………..…………………………………………......12

1.5 Application Components……………………………………………………..........16

1.5.1 The main components of Android…………………………………………….....17

1.5.2 AndroidManifest.xml file ………………………………………….…………….18

1.5.3 R.java, Resources and Assets…………………………………………………….18

1.5.4 Activity and layout……………………………………………………………….18

1.5.5 Activity and life cycle……………………………………………………………19

1.5.6 Context…………………………………………………………………………...19

1.6 Resources application………………………………………………………………19

1.7. Analysis of existing analogues…………………………………………………….20

1.7 Requirments Specification for a Mobile Application Development……………….21

1.8 Conclusions to the first section……….…………………………………………….22

2. DESIGNING APPLICATION USING XML, JAVA……… ………………………23

2.1 Analysis and use of XML ………………………………………………………….23

2.2 . Analysis and use of JAva……………………………………………………….....23

2.3 . XML naming schemes…………………………………………………………….24

2.4 Java Name Scopes………………………………………………………………….26

2.5 . Tag nesting………………………………………………………………………..28

2.6 . Links to XML files. File Strings.xml …..………………………………………..28

2.7 Definition and application of styles: file styles.xml..…………………………….. 29

2.8 Comments and lack of processors…………………………………………………30

2. 9 Definition of the application menu: menu.xml file……………………………….32

2.10 Conclusions to the second section………………………………………………..34

3. IMPLEMENTATION OF THE "HANDBOOK FOR CELEBRATION

APPLICATION "………………………………………………………………………35

3.1 Application Activity Implementation ……………………………..………………35

3.2. Markup code development strings.xml……………………………………………37

3.3 .MainActivity.java code development……………………………………………..38

3.4. AndroidManifest.xml markup code development…………………………………45

3.5. Functionality description…………………………………………………………..46

3.6. Conclusions to the third section………………………………………………..….50

4 OCCUPATIONAL HEALTH AND SAFETY…………………………………….. .51

4.1 General issues of labor protection………………………………………………….51

4.2 Analysis of working conditions………………………………………………….....52

4.2.1 Premises requirements……………………………………………………………52

4.2.2 Requirements for the organization of the workplace…………………………......53

4. 3 Industrial sanitation………………………………………………………………...54

4. 3.1 Analysis of hazardous and harmful factors in the production (operation) of the

product………………………………………………………………………………….54

4. 3 .2 Fire safety……………………………………………………………………….56

4. 3 .3 Electrical safety…………………………………………………………………56

4. 4 Hygienic requirements for the parameters of the production environment………..57

4. 4 .1 Microclimate…………………………………………………………………….57

4. 4 .2 Lighting………………………………………………………………………….57

4. 5 Ventilation………………………………………………………………………. 59

4. 6 Measures to organize the production environment and prevent emergencies……..60

4. 6 .1 Calculation of protective grounding (ensuring the electrical safety of the

building)……………………………………………………………………………… 61

4. 7 Conclusions to the fourth section…………………………………………………..64

 CONCLUSIONS ………………………………………………………………………65

THE LIST OF REFERENCES………………………………………………………....66

Appendix A……………………………………………………………………………..68

Appendix B……………………………………………………………………………...85

8

INTRODUCTION

Today, the development of a mobile application is one of the popular topics all

over the world that are being actively developed [1]. After the advent of smartphones

according to statistics, a significant number of people use it during the day for

business and leasure purposes.

Creating a mobile application provides new opportunities for expanding,

information support or advertising of a business.

A professionally created application gives the user the ability to query the

search engines depending on what purpose it was created. Constantly downloading,

the application enables programmers to develop experience in the IT field without

advertising.

A quality application is a basic information reference for users. Using a mobile

application, you can [2]:

- view information on the topic at any convenient time;

- international online payment;

- online shopping for goods and services;

 - electronic dictionaries;

 - WPS Office editing;

 - banking application and others.

The goal of the graduation project is to develop a mobile application for

OS Android "Handbook for Celebration" intended for any user containing

information about different gifts for any type of holiday, tips and information

on the horoscope, etc.

1 ANALYSIS OF MEANS OF DEVELOPING APPLICATIONS FOR

ANDROID OS

1.1 Domain Overview

Android is an operating system for mobile phones based on the Linux kernel

[3]. This system is quite recent realted to others; the first device HTC Dream (T -

Mobile G1) with OS Android was introduced in September 2008. For comparison:

the first device with WinMobile was April 2000, Symbian Ltd was founded in 1998,

and the first smartphones with this system on board also appeared in 2000. Let's get

back to Android: first, this system was developed by Android Inc., which was then

bought by Google.

 In this year Google initiated the creation of the Open Handset Alliance (OHA)

business alliance, which is now engaged in support and further development of

platforms. OHA currently has 65 companies, including mobile phone manufacturers,

software developers, some mobile providers, and chip manufacturers. Among them:

Google, HTC, Intel, Motorola, Qualcomm, Texas Instruments, Samsung, LG, T-

Mobile, Nvidia. Android platform is already very popular in the market of mobile

devices.

So, according to research of NPD Group inc. [4], already in the first quarter of

2010 Android OS outperformed the iPhone OS in popularity. According to NPD,

today Google has 28% of the market, which puts them in second place after Research

in Motion (36%), iPhone OS is in third place with 21%.

Also at Mobile World Congress 2010 was announced several tablets and

netbooks with Android as the operating system, created work, the control device of

which smartphones with Android OS. Also on Google IO in 2010, Google TV was

announced, also based on Android OS.

1.2 Java programming language

First, a Java speech called Oak ("Oak") was developed by James Gosling for

programming consumer electronic devices [5]. Subsequently, it was renamed Java

and was used to write client applications and server software. It is named after the

Java coffee brand, which in turn, received the name of the island of the same name

(Java), therefore a cup with hot coffee, and is depicted on the official language

emblem. There is another version of the origin of in the name of the language

associated with an allusion to a coffee machine as an example of a household device

for the programming of which speech was first created.

Java is an object-oriented programming language developed by Sun

Microsystems (later acquired by Oracle). Java programs can run on any virtual Java

machine, regardless of computer architecture. The official release date is May 23,

1995.

The Java language is actively used to create mobile applications for the

Android operating system. Application development can be done in Android Studio,

NetBeans, Eclipse, using the Android Development Tools (ADT) plugin or in IntelliJ

IDEA. The JDK version should be 5.0 or higher.

Java was chosen as the programming language for the application , since Java

has a large selection of libraries and is officially supported in Android Studio , which

was chosen as the application development environment .

Android Studio has replaced the flags on ADT for the Eclipse platform. The

environment is based on the source code of the product IntelliJ IDEA Community

Edition by the developing company JetBrains. Android Studio is developed as part of

an open development model and is distributed under the Apache 2.0 license.

Binary assemblies are prepared for Linux (for testing and the state of Ubuntu),

Mac OS X and Windows. Media still provides the means for the development of IP

Nij not only for smartphones and tablet, but also for handheld devices based on of

Android Wear app, TV (All Android the TV), the eye piece and the Google Glass,

and automotive infotainment systems (All Android the Auto). For applications,

originally designed with IC Niemi Eclipse and the ADT the Plugin, prepared by the

tool to automatically import existing project in All Android Studio.

The development environment is adapted to perform typical tasks that are

solved in the process of developing applications for the Android platform. Including

environment includes tools to simplify test programs for compatibility with different

versions of the platform and tools for designing applications, running on devices with

screens of different resolutions (tablets, smartphones, laptops, watches, glasses, etc.).

In addition to the features that are present in IntelliJ IDEA, Android Studio

implements several additional functions, such as a new unified subsystem for

compiling, testing and deploying applications, based on Gradle assembly tools and

supporting the use of continuous integration tools.

To speed up application development, a collection of typical interface elements

and a visual editor for compiling them are presented, it provides a convenient

preview of the various states of the application interface (for example, you can see

how the interface will look for different versions of Android and for different screen

sizes). To create custom interfaces, there is a wizard to create your own design

elements, supports the use of templates. The environment has built-in functions for

loading typical code samples from GitHub .

The structure also includes advanced refactoring tools adapted to the features

of the Android platform, checking compatibility with previous releases, identifying

performance problems, monitoring memory consumption and evaluating usability. A

quick edit mode has been added to the editor. The system of highlighting, static

analysis and error detection is expanded with support for the Android API. Integrated

ProGuard code optimizer support. An interface for managing translations into other

languages is provided.

 1.3 Android Studio

Android Studio [6] has the following features:

1. Live layouts: live coding, view (rendering) in real-time program.

2. Developer Console: optimization tips, translation assistance, direction

tracking, campaigning and promotions, Google analytics metrics.

3. Based on Gradle.

4. Android refactoring and quick fixes.

5. Lint utilities to cover performance, usability, version compatibility, and

other issues.

6. Using ProGuard features and program signatures.

7. Templates for creating common Android designs and components.

8, A rich editor of layouts (layouts) that allows users to drag and drop the

components of the user interface, as an option, to see simultaneously layouts on

various screen configurations.

 As the development environment of the Android program, the software

product Android Studio was selected. It has an integrated development environment

(IDE) for working with the Android platform, announced May 16, 2013 at the

Google I/O conference .

1.4 XML markup language

The XML language [7] is designed to store and transfer data. In the same time

the HTML language is designed to display data.

Before proceeding, make sure you have basic knowledge of HTML. If you

don't know what HTML is, then the HTML tutorial for beginners will help you figure

this out.

XML stands for English as eXtensible Markup Language. XML is a markup

language that resembles HTML. XML is for data transfer, not for displaying it. XML

tags are not predefined. You must determine the tags you need. XML is described in

such a way as to be self- defined .

The differences between the XML and HTML languages are as follows.

XML is not a replacement for HTML. They are designed to solve various

problems: XML solves the problem of storing and transporting data, focusing on

what this very data is, HTML solves the problem of displaying data, focusing on how

this data looks. Thus, HTML takes care of the display of information, and XML takes

care of the transport of information.

Perhaps you will find it a little strange, but XML does not do anything. It was

created to structure, store and transmit information.

The following example presents a note from Tovi to Janie, saved in XML

format:

<? xml version = "1.0" encoding = "UTF-8"?>

< note >

 < to > Tove </to>

 < from> Jani </from>

 < heading > Reminder </ heading >

 < body > Don't forget about me this weekend! </ / body >

</ note >

The above record is quite descriptive. There is information about the sender

and receiver. There is also header data and the message itself. And for all that, this

XML document does nothing. This is just information wrapped in tags. Someone

must write a program that will send, receive, and display this data.

Tags in the above example (for example, <to> and <from>) are not defined by

any XML standards. These tags were "invented" by the author of this XML

document. That's because there are no predefined tags in the XML language.

So, in HTML, all tags used are predefined. HTML documents can only use

tags that are defined in HTML standards (<p>, < li >, etc.).

XML allows the author to define his language tags and his document structure.

XML is not a replacement for HTML XML is a complement to HTML.

It is important to understand that XML is not a replacement for HTML. Most

web applications use XML to transport data, and HTML to format and display data.

Nowadays, XML is also important for the web, as HTML was once important

for the birth of the modern Internet. XML is a common tool for transferring data

between all kinds of applications.

XML is used in many aspects of web development, but its main task is to

facilitate the storage and transfer of data.

If you need to display dynamic data in an HTML document, it will take too

much time, if whenever this data has changed, edit the HTML document itself.

With XML, data can be stored in separate XML files . At the same time, you

focus on using HTML/CSS to render and template and you can be sure that new data

arriving will not require any changes to the HTML code of the document.

In the real world, computer systems and databases use data in incompatible

formats.

XML data is stored in plain text format. This provides software and hardware

independence. This makes it easy to create data that can be used by a wide variety of

applications.

One of the most time-consuming problems of developers has always been and

still is the problem of data exchange between incompatible systems.

Transferring data in the form of XML significantly reduces the complexity of

this problem, since data in this format can be read by various incompatible

applications.

The transition to new systems (hardware or software platforms) always takes a

lot of time. A lot of data needs to be converted to new formats. However, often

incompatible data is lost.

XML data is stored in text format. This greatly facilitates the expansion or

modernization of operating systems, the transition to new applications or browsers

without the risk of losing data.

Access to your data can get not only HTML documents, but also any other

applications. Thanks to XML, your data becomes available for all types of "reading

machines" (voice machines, news channels, etc.), which makes it much easier for

people with visual impairments and other physical problems to access them.

Using XML, many programming languages have been created on the Internet.

Here are some examples:

- XHTML;

- WSDL to describe available web services;

- WAP and WML as markup languages for handheld devices such as PDAs;

- RSS languages for news feeds;

- RDF and OWL for resource description and ontology;

- SMIL to describe multimedia for the network.

The layout defines the visual structure of the user interface, for example, the

operation user interface or application widget. There are two ways to declare a

layout:

Declaring user interface elements in XML. Android has a handy reference for

XML elements for View classes and their subclasses, such as those used for widgets

and layouts.

Creating instances of elements at runtime. Your application can

programmatically create View and View Group objects (as well as manage their

properties).

The Android platform gives you the flexibility to use any of these methods to

declare and control the user interface of an application. For example, you can declare

default layouts in XML, including screen elements that will be displayed in layouts

and their properties. Then you can add code to the application that allows you to

change the state of objects on the screen (including those declared in XML) at run

time.

The ADT plug-in for Eclipse(what is this stands for ?) provides a preview

function for the XML file you created - just open the XML file and select the Layout

tab .

You can use the Hierarchy Viewer tool to debug layouts - you can use it to

view property values, frames with fill or field indicators, and fully rendered views

right while debugging the application in the emulator or on the device.

Using the layout opt tool, you can quickly analyze layouts and their hierarchies

for poor performance or other problems.

The advantage of declaring a user interface in an XML file is that in this way

you can more effectively separate the presentation of your application from the code

that controls its behavior. User interface descriptions are outside the scope of your

application code. This means that you can change or adapt the interface without

having to make changes to the source code and recompile it. For example, you can

create different layout XML files for screens of different sizes and different screen

orientations, as well as for different languages. Additionally, declaring a layout in

XML simplifies the visualization of the user interface structure, making debugging

problems also easier. In this article, we will teach you how to declare a layout in

XML. If you prefer to instantiate View objects at run time, see the reference

documentation for the View Group and View classes .

Typically, a reference to XML elements for declaring user interface elements

exactly follows the structure and naming rules for classes and methods - element

names correspond to class names, and attribute names correspond to methods. In fact,

the correspondence is often so exact that you can easily guess which XML attribute

corresponds to a particular class method, or which class corresponds to a given XML

element. However, it should be noted that not all directories are identical. In some

cases, the names may vary slightly. For example, the element Edit Text has an

attribute text, which corresponds to the method EditText.setText().

 1.5 Application Components

As it was mentioned above, Android is an operating system based on Linux

with a programming interface on the Java [2]. This system is equipped with tools

such as the compiler, debugger and device emulator, as well as its (Android) Java

virtual machine (Dalvik Virtual Machine - DVM). Android was created by the Open

Handset Alliance, led by Google.

Android uses a special virtual machine called the Dalvik Virtual Machine.

Dalvik uses its own special byte code. Therefore, you cannot run the standard Java

bytecode on Android. Android provides a dx tool that allows you to convert Java

Class files to .dex files (Dalvik Executable). Android applications are packaged in

.apk files (Android Package) with the aapt (Android Asset Packaging Tool) program.

To simplify development, Google provides Android Development Tools (ADT) for

Eclipse. ADT automatically converts from Java Class files to .dex files, and creates

.apk during deployment.

1.5.1 The main components of Android

Android applications consist of the following parts:

Activity - is a scheme for representing Android applications. For example, it

could be the screen that the user sees. An Android application can have several

activations and can switch between them at runtime.

Views - the activity user interface created by widgets of classes inherited from

android.view.View class. The views schema is managed through

android.view.ViewGroups class.

Services - performs background tasks without providing a user interface. They

can notify the user through the Android notification system.

Content Provider - provides data to applications, with the help of a content

provider your application can exchange data with other applications. Android

contains a SQLite database , which may be a content provider.

Intents are a synchronous messages that allow an application to request

functions from other services or activations. An application can do direct intentions

to a service or activity (explicit intention) or request from Android registered services

and applications for intent (implicit intention). For example, an application can

request via intent a contact from the contacts application (phone / address book) of

the device. The application registers itself in intents through Intent Filter . Intents is a

powerful concept that allows you to create loosely coupled applications.

Broadcast Receiver/Broadcast Receiver (hereinafter referred to simply as the

Receiver) - receives system messages and implicit intents, can be used to respond to

system status changes. An application can register as a receiver of certain events and

can be launched if such an event occurs.

Other parts of Android are widgets, or live folders (Live Folders), or live

wallpapers (Live Wallpapers). Live folders display the source of any data on the

desktop without launching the corresponding applications.

1.5.2 AndroidManifest.xml file

Android applications are described by the AndroidManifest.xml file. All

activity, services, receivers and content providers of the application must be declared

in these files. It should also contain the permissions required by the application.

1.5.3 R.java, Resources and Assets

The gen directory in an Android project contains the generated values.

 While the res directory stores structured values known to the Android

platform, the assets directory can be used to store any data. In Java, you can access

this data through the Assets Manager and the getAssets() method.

1.5.4 Activity and layout

The user interface for the activity is determined with the help of layouts. At

runtime, layouts are instances of android.view.ViewGroups class. The layout defines

the user interface elements, their properties and location. UI elements are based on

the android.view.View class. The layout can be defined using Java code or using

XML.

1.5.5 Activity and life cycle

The operating system controls the life cycle of your application. The most

important methods:

onSaveInstanceState() - calls if activity is stopped. It is used to save data when

restoring the activity state , if the activity is resumed;

onPause() - always called if activity has completed, can be used to free

resources or save data;

onResume() - called if activity is resumed, can be used to initialize fields.

1.5.6 Context

The android.content.Context class represents connections to the Android

system. This is the interface for global information about the application

environment. The context also provides the getSystemService() method, which

allows you to get the control object for various pieces of equipment. Since Activities

and Services extend the Context class, you can directly access the context with "this".

 1.6 Resources application

This section describes how to create, package, and use the resources of your

application with strings, images, and files. For example, you can pack a file along

with a casual game containing definitions of game levels and load it at run time. We

will also consider how ensuring independence of resources from the application logic

makes it easy to localize and configure the application for different countries,

displays, accessibility settings and other contexts with different users and computers.

Resources, such as strings and images, should usually be presented in several

versions for different languages, scales and contrast. For such resources, support is

provided for a resource management system.

There are two types of application resources.

A file resource is a resource stored as a file on disk. A file resource can contain

bitmap, XAML, XML, HTML, or any other data.

Nested resource - A resource embedded in a specific file containing resources.

The most common example is a string resource located in a resource file (RESW or

RESJSON file).

1.7. Analysis of existing analogues

The Holiday Calendar application [9] was taken as the main analogue and

prototype (see fig. 1.1). I analyzed several applications to identify differences

between them and make requirements for my own implementation.

Figure 1.1 - Example of the main menu of the "Holiday Calendar" application

As can be seen from fig.1.1, this Holiday Calendar provides information about

which holidays are celebrated on a particular day of any year. The calendar contains a

description of national holidays in Ukraine, Russia, and Belarus, as well as a large

number of international holidays and observances. Dates of rolling holidays are

recalculated automatically for each year. You can easily find the holiday you are

interested in or find out what you can congratulate your friends tomorrow, the day

after tomorrow, or maybe in a couple of years. The program does not require an

Internet connection. An example of displaying the application "Holiday Calendar" is

shown in fig. 1.2.

Figure 1.2 - An example of displaying the application "Holiday Calendar"

After analyzing all the advantages and disadvantages, a technical task was

drawn up to develop an application on the Android OS using XML, Java.

1.7 Requirements Specification for a Mobile Application Development

Purpose: A Handbook for Celebration is the smartphone app that helps people

to organize their special events like dates, birthdays, etc. This application should run

on a mobile platphorm.

Intended audience: people from 14 to 100 who use the smartphones

Operating environment and target OS platform: Android

Product features: Android application "Handbook for Celebration" should

contain for any user that contains information about the different gifts for every type

of holiday, advice and information on a horoscope.

The application should include the following sections:

1. Flowers

2. Jewelry

3. Toys

4. For parents

5. Information

6. Advice

Other features: view parameters for various gifts, tips or horoscope

information for various types of holidays in one mobile application.

The application should provide the user with the easiest way to view options

for various gifts, tips or horoscope information. The user can be informed about

different gifts for any type of holiday, event or celebration.

To achieve these goals, the application must solve the following tasks:

- providing information on the category ;

- providing information on the horoscope ;

- providing a short description about the application.

1.8 Conclusions to the first section

The purpose of the graduation project is to develop a Android application

"Handbook for Celebration" using the Android Studio software. The application

should implement the choice of the best gift for any type of holiday by category,

horoscope, advice, information about the application and a convenient interface.

2 DESIGNING APPLICATION USING XML, JAVA

2.1 Analysis and use of XML

XML is an eXtensible Markup Language. Extensibility of this language allows

configure everything according to needs; create own tag sets for any purpose [7, 10].

It’s called a markup language because it uses "tags" to determine what needs to be

done so. In most cases, this language is similar to the HTML5 language which is used

for website development and application design nowadays.

As opposed to programming languages, markup languages use tags and

attributes in these tags, as well as nesting to accomplish tasks. XML is used for

design, the user interface, user experience, styles and themes, graphics, and etc.

Moreover, learning XML markup is much easier than learning software structures

and language concepts.

XML markup is contained in simple text files with the extension .xml. XML

files can be created in a text editor, for example, in Notepad; however, most

programmers use markup language design tools such as Eclipse, IntelliJ, or

NetBeans. Later created XML files are opened or parsed by the Android OS or Java

application code and converted into Java subject pattern using XML "detections" in

each file.

2.2 Analysis and use of Java

There are three main versions of the Java language: SE (Standard Edition) for

individual users, EE (Enterprise Edition) for large user groups and ME (Micro

Edition) for legacy mobile flip phones [11]. Most modern Android smartphones use

Java SE, not Java ME [8].

What is interesting for the Android OS, the standard version of Java (Java SE 6

or 7) is used, just like it does on a PC.

2.3 XML naming schemes

XML consists of tags and their attributes [10]. Attributes are part of tags and

are used to configure tag functions, as well as for links of new media assets, fonts,

color values, styles, themes, other XML definitions and similar assets that may be

required to format or define how an application element is displayed on the user’s

screen.

XML tags and attributes that can be used with a specific framework, like in

Android, use the XML naming scheme. Such a scheme for Android is contained in a

centralized Web Repository of Google's Android servers.

As XML was originally designed "extensible" it should have naming schemes,

which means that there is no "standard" version of XML; Each version is configured

according to requirement of the end-user. In the case of XML for Android, it was

specifically created for Android application development.

For example, Android developers created an <RelativeLayout> XML tag for

UI design based on a layout with relative placement of elements, which ultimately

uses the RelativeLayout Java class to define objects of this class. The following is a

listing of the activity_main.xml file for a simple UI application using this layout:

<RelativeLayout

 xmlns:android=

"http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight=

"@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

style="@style/WelcomeTextView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/welcome" />

 <ImageView

 ...

/>

 ...

</RelativeLayout>

To check all tags and attributes are valid and "valid" the XML naming scheme

is referenced at the very top of each XML detection file, so the XML markup inside

of this file can be checked according its XML naming scheme (configuration

specification). Eclipse - ADT does not do it in "real time," so an active Internet

connection is not required to develop XML markup. The process of validating tags

and attributes (according to the definitions of the XML naming scheme) is called

XML validation.

In any eXtensible markup language, the URL of the naming scheme must be in

the first (external) "parent" tag. This parent tag typically contains "child" tags that are

"nested" inside of the parent tag. For more clarity, nesting of tags is usually marked

with indents relative to each other.

Android OS actually has two XML naming schemes nested in two different

repositories. The first scheme, the XML naming scheme for Android packages (apk),

was designed for high-level design-oriented XML and is located at

schemas.android.com/apk. This scheme is used in 95% of the application

development process. The second scheme is the naming scheme for the Android

toolkit (tools) designed for low-level XML, oriented to OS usage, and is located in

schemas.android.com/tools. This XML can be used, for example, to declare objects

of the Context class.

2.4 Java Name Scopes

As a language that supports dynamic method of loading by the Internet Java

prevents name conflicts [8]. Therefore, in particular, in Java there are no global

variables, all variables and functions (methods) are parts of the class, moreover, each

class is part of the package.

In Java each variable or method is referenced by using a full name consisting

of the package name, class name, and class member name, separated by dots. A

package name usually consists of many components, also separated by dots. Java

developers propose using the domain names of package development organizations in

package names to ensure the uniqueness of package names on the Internet, for

example: en.bmstu.students.rk6.Ivanov.game

Class files are stored in folders according to the package name. For example,

all game classes of student Ivanov are stored in a folder with a relative name: com /

bmstu / students / rk6 / Ivanov / games

To determine the full path name of the folder containing the package class

files, the Java interpreter java uses the CLASSPATH system variable, which can be

set, for example, with bash the command:

export CLASSPATH = .: ~ / classes: / usr / local / java / classes

It is not necessary to include paths to system classes in CLASSPATH, since

the Java interpreter attaches these paths to the list on the right by itself.

Classpath parameter of the java interpreter plays a similar but not quite similar

role.

To include a class in a package, use the instruction:

package <package_name>;

which must be the first instruction in the source file. If the package statement is not in

the source code of the class, then the class is considered to belong to the "default"

package, whose class files are located in the current folder, which is convenient for

development.

An optional package statement can be followed by any number of import

statements that have two forms of notation:

import <package-name>. <class-name>;

import <package_name>. *;

The purpose of the import statement is to enable the use of "shortened" class

names and their members in the program text (without the prefix in the form of a

package name). It is important to understand that the import statement does not entail

any loading of individual classes or packages (this is its difference from #include in C

++). Once again - classes in Java are loaded dynamically only when they are needed !

Access to packages, classes, and class members is controlled by using the public,

protected, and private modifier keywords and is governed by the following rules.

The package is available if the appropriate files and folders are available (for

example, if local files have appropriate read permissions or can be downloaded over

the network).

Each class and interface of a package is accessible to all other classes and

interfaces of the same package. It is impossible to define Java classes that are visible

in only one source file.

A class designated as public in one package is available from another package

if the package itself is available. Classes not designated as public are not available

outside of the package.

Members of a class are accessible from another class in the same package

unless they are designated private. Members of a class designated as private are only

available in their own class.

A member of class A is accessible from class B, which is part of another

package, in cases when class A, like its member, is designated as public or when

class A is designated as public, class member is designated as protected, and class B

is derived class of class A.

All members of the class are always available within the class.

2.5 . Tag nesting

Any tag that is used as a parent tag must have a closing tag with a slash as a

prefix before the tag name: <RelativeLayout> ... </RelativeLayout>.

Alternatively, a child tag that does not have its own child tags should have only

a closing slash at the end of the opening tag: <TextView android : attributes />.

Tags can be nested into each other to a depth greater than one, for example:

<RelativeLayout>

<LinearLayout>

<TextView />

<ImageView />

</LinearLayout>

</RelativeLayout>

2.6 . Links to XML files. File Strings.xml

XML files can refer to other XML files, so a chain can be created to make

XML definitions more modular. Links between XML files are somewhat similar to

nesting tags, but extend through files. Links in attribute values begin with the @

symbol, which is specific to links between files in Android.

For example, the prefixes @ string /, @ style / and @ dimen / used in the

attribute values of the activity_main.xml file given above refer to the tags and

attributes of the strings.xml, styles.xml and dimensions.xml files, respectively.

The following is an example of a listing of the strings.xml file located in the /

res / values folder of a project:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Welcome</string>

 <string name="welcome">Привет, Андроид!</string>

...

</resources>

The strings.xml file does not have a reference to the XML naming scheme in

the Android repository, since it contains only resource definitions. It contains the

parent <resources> tag and child <string> tags, each of which consists of a variable

name in the name attribute (for example, name = "welcome") and its value (Hello,

Android!) between the start and end tags.

An example of using a style rule in a control located in the activity_main.xml

activity file:

 <TextView

...

android:text="@string/welcome"

...

2.7 Definition and application of styles: file styles.xml

Styling UI elements in Android applications is as follows. First, in the resource

file (styles.xml file in the res / values folder of the application), style rules are defined

containing the attribute_name / value pairs for the group of GUI components. Then

these style rules apply to those components that should have a similar style. Each

style rule is designed using a special XML attribute style. Any changes made in the

style rule will be automatically applied to all GUI components using this style. The

following is a listing of an example styles.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <style name=" WelcomeTextView ">

 <item name="android:layout_width">wrap_content</item>

 <item name="android:layout_height">wrap_content</item>

 ...

 </style>

 <style name="ContactTextView">

...

 </style>

...

</resources>

An example of using a style rule in a control element located in the

activity_main.xml activity file:

<TextView

style="@style/WelcomeTextView"

 ...

2.8 Comments and lack of preprocessors

Java supports three kinds of comments:

1. In the style of the C language (from "/ *" to "* /").

2. In the style of the C ++ language (from "//" to "\ n").

3. Special comments "for documentation" (from "/ **" to "* /").

Java does not have a preprocessor similar to the C++ preprocessor. And that

means there are no directives such as #define, #include, #ifdef. In fact Java doesn’t

need them.

The equivalent of a constant designated in C / C ++ via #define is a variable

designated in the Java class as static final, for example: java.lang.Math.PI. The

advantages of this approach are: strict typing of constants and uniqueness of

hierarchical names, which eliminates conflicts (the same PI cannot be redefined).

Macros (another use of #define) are replaced by the inline substitution

implemented by the Java compiler for short methods automatically.

The unnecessity of # include is due to two factors. Firstly, a class file (with the

extension .class) is at the same time both a class declaration and its definition

(implementation), which means that there is no need of header h-files. Secondly, the

standardization in the placement of class files in folders enables the Java interpreter

to uniquely determine the location of the loaded class, which means that there is no

need to include source files directly.

NOTE! Unfortunately, the lack of inclusion of fragments of the source text can

make the source class files excessively large. This is especially true due to the fact

that Java allows the definition of classes in a class, as discussed below.

Conditional compilation (# ifdef / # endif in C ++) in Java is done implicitly.

The fact is that a normal Java compiler (for example, javac) determines sections of

the source text that will never be executed, and ignores them without generating byte

code for them. This means that the C / C ++ construct is in the following form:

#ifdef DEBUG

... debugging code ...

#endif

can be simulated in Java by construction:

private static final boolean DEBUG = true / false;

if (DEBUG) {

... debugging code ...

};

Since DEBUG is a constant, the compiler knows before debugging whether

debugging code will ever be executed or not.

Encoding characters, strings and identifiers (i.e. class names, variable methods)

in Java are formed by 16-bit Unicode characters. This provides, for example, the

ability to give classes and their members Russian names.

NOTE. Unicode representation of Latin characters is the same as their

representation in ASCII and ISO8859-1 (Latin-1).

But, unfortunately, Unicode includes a Cyrillic encoding that matches the

ISO8859-5 standard, which is not popular among us (although all UNIX systems

support it).

An esc sequence \ u xxxx , where x is a hexadecimal digit, is used to represent

Java characters that do not have a graphic representation (for example, due to the lack

of appropriate fonts) . For example, \ u044E represents the lowercase Russian letter

"ю ".

2. 9 Definition of the application menu: menu.xml file

The following is an example listing of an XML file to define one of the

application's activities (view_contact_menu.xml) menu:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/editItem"

 android:title="@string/menuitem_edit_contact"

 android:orderInCategory="1" android:alphabeticShortcut="e"

 android:titleCondensed="@string/menuitem_edit_contact"

 android:icon="@android:drawable/ic_menu_edit"></item>

 <item android:id="@+id/deleteItem"

 android:title="@string/menuitem_delete_contact"

 android:orderInCategory="2" android:alphabeticShortcut="d"

 android:titleCondensed="@string/menuitem_delete_contact"

 android:icon="@android:drawable/ic_delete"></item>

</menu>

Menu XML files are located in the res / menu folder of the application, like

other resource files. Each XML menu file contains a root <menu> tag, where the

quantity of <item> tags are equal to menu items for implementation of this activity.

For each menu item, the value of the android : id attribute is determined, which

enables programmatic interaction with the corresponding menu item. Other menu

item attributes are listed in the following list:

1. Attributes android : title and android: titleCondensed. Using these attributes,

the text displayed by the menu item is determined. The second attribute is applied if

the text is too long to be displayed in the corresponding menu item.

2. Android : icon attribute . This attribute defines the image (drawable) that is

displayed in the menu item above its text. In the examples of menu items three

standard icons are used that are provided by the Android SDK. These icons are

located in the data / res / drawable-hdpi folder of each version of the SDK. To refer to

these icons in the XML markup, @android values are used: drawable / icon_name.

3. Android attribute : alphabeticShortcut. By means of this attribute, the letter

is defined which is to be pressed by the user on the physical keyboard to select a

menu item.

4. Android attribute : orderInCategory . This attribute defines the order in

which menu items are displayed.

2.10 Conclusions to the second section

This section provides brief information about application development tools.

An analysis of the necessary software was carried out, and methods for

creating the application were also determined.

The information considered will be taken into account when developing a

ready-made mobile application.

3 IMPLEMENTATION OF THE "HANDBOOK FOR CELEBRATION"

APPLICATION

3.1 Application Activity Implementation

When creating GUI screens, the Activity class is belonged and the View is

used to interact with the user.

Each activity is a screen (similar to the form) that the application can display to

users. The more complex the created application, the more screens (activities) will be

required. When creating an application, you will need at least the initial (main)

screen, which provides the basis for the user interface of the application. If necessary,

this interface is supplemented by secondary activities designed to enter information,

display it and provide additional capabilities. Starting (or returning from) a new

activity leads to a "movement" between UI screens.

Most activities are designed to take advantage of the entire screen space, but

you can also create translucent or floating dialog boxes.

If you want the theme to refer to the only seperate activity, but not to entire

application, then the android: theme attribute must be added to the < activity > tag.

In most cases, there is no need to come up with your own styles and themes,

since Android contains many of its own integrated themes. For example, you can use

the Dialog theme to make the application screen look like a dialog box

<activity android:theme="@android:style/Theme.Dialog">

For a transparent screen, you can use the Translucent theme:

<activity android:theme="@android:style/Theme.Translucent">

If you like the topic, but still want to change some of your own themes , you

just need to add the topic as a parent theme to your own topic. For example, I want to

modify the standard Theme_Light theme to use my colors:

<color name="custom_theme_color">#b0b0ff</color>

<style name="CustomTheme" parent="android:Theme.Light">

<item

name="android:windowBackground">@color/custom_theme_color

</item>

<item

name="android:colorBackground">@color/custom_theme_color

</item>

</style>

Now in the manifest you can use your own style instead of Theme.Light :

<activity android:theme="@style/CustomTheme">

The following is a short list of properties that can be used to customize your

own themes:

android: windowNoTitle - use true to hide the title.

android: windowFullscreen - use true to hide the status bar and free up space

for the application.

android: windowBackground - a color resource or drawable for the

background.

android: windowContentOverlay - drawable , which is drawn over the window

contents. By default, this is the shadow of the status bar. You can use null (@ null in

the XML file) to delete a resource

.

New styling features for applications for Android 5.0 (API level 21) and

higher can be found at [12].

3.2. Markup code development strings.xml

The strings.xml file does not have a reference to the XML naming scheme in

the Android repository, since it contains only resource definitions. It contains the

parent <resources> tag and child <string> tags, each of which consists of a variable

name in the name attribute and its value, such as: "Flower is", "Jewelry", "Toys",

"For Parents".

<resources>

<string name="txtCredits">Support: click here</string>

<string name="app_name">Handbook for Celebration</string>

<string name="navigation_drawer_open">Open navigation drawer</string>

<string name="navigation_drawer_close">Close navigation drawer</string>

<string name="nav_header_title">Handbook for Celebration </string>

<string name="nav_header_subtitle">android.studio@android.com</string>

<string name="nav_header_desc">Navigation header</string>

<string name="action_settings">Settings</string>

<string name="Flower">Flower</string>

<string name="Jewelry">Jewelry</string>

<string name="Toys">Toys</string>

<string name="ForParents"> For Parents</string>

<string name="Information">Information</string>

<string name="Advice">Advice</string>

<string name="Flower_1"> ***</string>

<string name="Flower_2">***</string>

<string name="Flower_3">***</string>

<string name="Flower_4">***</string>

<string name="Flower_5">***</string>

<string name="Flower_6">***</string>

</resources>

By clicking on each category a page opens. The user will be shown a list of

topics where you can see information on clicking on each topic.

3.3 MainActivity.java code development

 To create a new activity, the Activity class is inherited. Inside the class

implementation, you must define the user interface and implement the required

methods. The basic framework for the new activity is shown in the program code

below:

package com.example.mynewapp;

import android.content.Intent;

import android.os.Bundle;

import android.view.MenuItem;

import android.view.View;

import androidx.annotation.NonNull;

import androidx.appcompat.app.ActionBarDrawerToggle;

import com.google.android.material.navigation.NavigationView;

import androidx.drawerlayout.widget.DrawerLayout;

import androidx.appcompat.app.AppCompatActivity;

import androidx.appcompat.widget.Toolbar;

import android.view.Menu;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.Toast;

import java.util.ArrayList;

import java.util.Arrays;

Public class MainActivity extends AppCompatActivity and implements

NavigationView.OnNavigationItemSelectedListener, DrawerLayout.DrawerListener

methods:

{

 private DrawerLayout drawer;

 private ListView List;

 private String[] array;

 private ArrayAdapter<String> Adapter;

 private Toolbar toolbar;

 private int category_index;

}

Method onCreate() is called to create activities and uses a class object Bundle

of packet android.os , which contains status and setting items UI activity as a binder

(bundle) values and settings. An application can save its state if the operating system

switches to the background, for example, if a user launches another application or

receives a phone call.

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

List = findViewById(R.id.ListView);

array = getResources().getStringArray(R.array.Flower);

Adapter = new ArrayAdapter<>(this,android.R.layout.simple_list_item_1,new

ArrayList<String>(Arrays.asList(array)));

List.setAdapter(Adapter);

toolbar = findViewById(R.id.toolbar);

setSupportActionBar(toolbar);

drawer = findViewById(R.id.drawer_layout);

NavigationView navigationView = findViewById(R.id.nav_view);

navigationView.setNavigationItemSelectedListener(this);

ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(this, drawer,

toolbar, R.string.navigation_drawer_open, R.string.navigation_drawer_close);

drawer.addDrawerListener(toggle);

toggle.syncState();

navigationView.setNavigationItemSelectedListener(this);

List.setOnItemClickListener(new AdapterView.OnItemClickListener() {

@Override

public void onItemClick(AdapterView<?> parent, View view, int position,

long id) {

Intent intent = new Intent(MainActivity.this, Text_Content_Activity_2.class);

intent.putExtra("category", category_index);

intent.putExtra("position", position);

startActivity(intent);

 }

 });

// ***

// ***

 }

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// ***

getMenuInflater().inflate(R.menu.main, menu);

toolbar.setTitle(R.string.Flower);

return true;

}

@Override

public boolean onNavigationItemSelected(@NonNull MenuItem menuItem) {

int id = menuItem.getItemId();

if (id == R.id.id_Flower) {

toolbar.setTitle(R.string.Flower);

array = getResources().getStringArray(R.array.Flower); //***

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

category_index = 0;

}

if (id == R.id.id_Jewelry)

{

toolbar.setTitle(R.string.Jewelry);

array = getResources().getStringArray(R.array.Jewelry);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

Toast.makeText(this, " Jewelry_present ", Toast.LENGTH_SHORT).show();

category_index = 1;

}

if (id == R.id.id_Toys)

{

toolbar.setTitle(R.string.Toys);

array = getResources().getStringArray(R.array.Toys);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

Toast.makeText(this, " Toys ", Toast.LENGTH_SHORT).show();

category_index = 2;

}

if (id == R.id.id_ForParents)

{

toolbar.setTitle(R.string.ForParents);

array = getResources().getStringArray(R.array.ForParents);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

category_index = 3;

Toast.makeText(this, " For Parents ", Toast.LENGTH_SHORT).show();

}

if (id == R.id.id_Information)

{

toolbar.setTitle(R.string.Information);

array = getResources().getStringArray(R.array.Information);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

Toast.makeText(this, " Information ", Toast.LENGTH_SHORT).show();

category_index = 3;

 }

if (id == R.id.id_Advice)

 {

toolbar.setTitle(R.string.Advice);

array = getResources().getStringArray(R.array.Advice);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

Toast.makeText(this, " Advice ", Toast.LENGTH_SHORT).show();

category_index = 4;

}

// ***

return true;

}

@Override

public void onDrawerSlide(@NonNull View drawerView, float slideOffset) {

}

@Override

public void onDrawerOpened(@NonNull View drawerView) {

}

@Override

public void onDrawerClosed(@NonNull View drawerView) {

}

@Override

public void onDrawerStateChanged(int newState) {

}

}

The body of the onCreate() method is composed of instructions for calling two

methods. The first method call uses the keyword to pass the saveInstanceState object

of the Bundle class to the onCreate() method of the base class (superclass)

android.app.Activity . A call to the second setContentView() method with a link to

the XML file activity_main.xml, located in the layout folder, displays the content

(Content View) of the main application activity on the screen . This instruction is as

follows:

setContentView(R.layout.activity_main);

where R is the path to the folder that contains the layout folder of the project, for

example:

C:\Users\Username\AndroidStudioProjects(workspace)\MyNewApp\res\

R.layout.activity_main

is converted to a file:

C:\Users\Username\AndroidStudioProjects\MyNewApp\res\layout\activity_main.xml

Thus, the setContentView() method loads the XML markup of the activity into

a class derived from the base class Activity.

The second method of the onCreateOptionsMenu() class is used to create a

menu for selecting activity options that opens when the <MENU> button is pressed

on a mobile device. The activity menu is created from the main.xml XML file

(located in the res/menu folder of the project) using the onCreateOptionsMenu()

method with the menu argument of the android.view.Menu class .

The body of the onCreateOptionsMenu() method consists of one main

statement and a return statement. The basic instructions for the object returned by

calling method getRescelebources(), called activity, which takes two arguments:

menu , which was referred to the method onCreateOptionsMenu (Menu menu),

and

XML-file folder main.xml menu,

transmitted by the familiar structure R .menu.main denoting the file:

C:\Users\Username\AndroidStudioProjects\MyNewApp\res\menu\main.xml

Thus, method .inflate() takes an object of the Menu class and fills it, guided by

the XML definition of the menu contained in the resource file. As soon as the activity

menu is formed and ready to use, the method returns Android OS to true.

3.4 AndroidManifest.xml markup code development

 Inheriting from the Activity class does not make the new activity

automatically available. Since an activity can play various roles in an application, the

Android platform requires some meta-information about the new activity. This meta-

information must be provided by the XML < activity > tag in the

AndroidManifest.xml application manifest file as below:

</manifest><?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.apress.helloworld" >

<application

android:allowBackup="true"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".MyActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name=

"android.intent.action.MAIN" />

<category android:name=

"android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

 As you can see from the listing, XML tag <activity> designated a new activity

providing class name, its title and how it should be presented to the user.

After the name of the project folder in Android studio is registered. After that

there is a list of folders in the application that executes the icon, label, application

name, content and theme .

Next is "Text_Content_Activity", allows the application to contain information

by category.

Next comes the activity ‘android:name = ".MainActivity"’. Next comes

‘android:label = "@string/app_name"’ and ‘android:theme = "@style/

AppTheme.NoActionBar "’>. The "intent-filter" filter, with which the system will

pass the implicit Intent object to the application only if it can go through one of your

Intent filters.

3.5 Functionality description

 The Mobile App “Handbook for the Holidays” represents select of best gift

for any type of events and holidays to the user. The application is focused on

holidays and debris that will provide useful information for them, which will help

when choosing the best gift (fig. 3.1).

Figure 3.1 - The main screen menu

The application offers a choice of six categories: "Flower", "Jewelry", "Toys",

"For Parents", "Information", "Advice".

After selecting any, the category by pressing you can see below the following

screenshots (fig. 3.2, 3.3, 3.4).

On these pages, there are available different windows with lists of topics where

you can see appropriate information on categories. Procedure is possible by clicking

on each topic.

Figure 3.3 - "Toys" and "For Parents" categories

Figure 3.2 - “Flower” and “Jewelry” categories

Figure 3.4 - "Information" and "Advice" categories

Below is an example of a screenshot of an application after selecting one of the

events in the “Flower” category (fig. 3.5).

Figure 3.5 - Screenshot after selecting of the events in the “Flower” category

3.6 Conclusions to the third section

The third section describes the steps for creating an application, describes the

interfaces and functions of the menu.

The section includes:

1. Description of application development.

2. Description of the interface with all categories.

The section also contains code fragments of the executed application pages and

screenshots for each category.

4 OCCUPATIONAL HEALTH AND SAFETY

In this section the analysis of potential dangerous and harmful production

factors, the reasons of fires are carried out. Measures to ensure occupational health

and industrial sanitation are examined. Based on the analysis, safety measures and

recommendations for fire prevention have been developed.

The aim of this bachelor work was to develop software and computer

management system of online store.

Since design process was carried out by the computer, the analysis of

potentially dangerous and harmful production factors are carried out for a personal

computer on which the developed software and computer system will be developed

and used.

4.1 General issues of labor protection

Working conditions at the workplace, safety of technological processes,

machines, mechanisms, equipment and other means of production, the state of

collective and individual protection used by the employee, as well as sanitary

conditions must meet the requirements of labor protection regulations. In the " labor

protection law" of Ukraine [13] stipulates that labor protection is a system of legal,

socio-economic, organizational and technical, sanitary and hygienic and treatment-

and-prophylactic measures and means aimed at preserving life, health and ability to

work of human beings in the process of labor activity.

Working with computers change the physical and chemical factors of the

environment: there is static electricity, electromagnetic radiation, changes in

temperature and humidity, the level of oxygen and ozone in the air. Improper

organization of the workplace leads to the general and local tension of the muscles of

the neck, corpora, upper extremities, spinal curvature and the development of

osteochondrosis.

4.2 Analysis of working conditions

Work on creating a website will take place in the apartment building where the

student lives. One person is enough for this job who needs a workplace with a

desktop computer.

4.2.1 Premises requirements

The geometric dimensions of the room are listed in table. 4 .1.

Table 4.1 - Dimensions of the room

Name Value

 Length, m 5

 Width, m 3

 Height, m 2

 Area, m
2

15

 Volume, m
3

30

According to GSN 3.3.6.042 -99 [18] the size of the area for one workplace of

a personal computer operator must be at least 6 square meters. m, and the volume -

not less than 20 cubic meters. m. Therefore, this room fully complies with these

standards.

To provide the required lighting, the room must have a window and a system

of steady light installed on the ceiling. According to the fire safety requirements there

should be the quickest way out from the room through a window with ventilation. In

the room there is always a blanket as well that can be used in case of fire.

 4.2.2 Requirements for the organization of the workplace

To compare the characteristics of the workplace accordance with regulations

and main requirements for organization of workplace according to STATE

STANDARDS 3.3.2.007 -98 [16] (Table. 4.2) and the appropriate values of

workplace the following full compliance is given hereinafter.

Table 4.2 - Characteristics of the workplace

The name of the parameter In fact

Value

Normative

value

Height of a working surface, mm 700 680 - 800

Height of space for legs, mm 650 not less than 600

Width of space for legs, mm 630 not less than 500

Depth of space for legs, mm 670 not less than 650

Seat surface height, mm 420 400 - 500

Seat width, mm 400 not less than 400

Seat depth, mm 400 not less than 400

Height of a surface of a back, mm 500 not less than 300

Width of a basic surface of a back, mm 470 not less than 380

The radius of curvature of the back in

the horizontal plane, mm

400 400

Distance from the eyes to the display

screen, mm

720 700 - 800

The office is located in a single-floor building with a volume of 54 m3, area - 1

5 m2.

The temperature in the room during the year varies between 18-24 ° C, relative

humidity - about 50%. The room ventilation system is unorganized, and the heating is

provided individually.

The placement of windows provides natural light with a coefficient of natural

light of at least 1.5%, and the total artificial lighting, which is carried out using a

single fluorescent lamp, provides a level of 55 illumination of at least 200 lux.

According to the degree of fire safety, the room belongs to category B.

4. 3 Industrial sanitation

Based on the analysis of hazardous and harmful factors during production

(operation), to meet requirements of fire safety employees must be provided with

sufficient lighting, air ventilation, grounding.

4.3.1 Analysis of hazardous and harmful factors in the production

(operation) of the product

Analysis of hazardous and harmful production factors is performed in tabular

form (Table 4.3). Work related to EOP with VDT, including equipped with

computers workplaces with VDT and CHP, is performed with the implementation of

NPAO 0.00- 7.15 -1 8 [17], which sets safety requirements for the equipment of

workers places to work with the use of computers with VDT and CHP. Most projects

are performed in offices or in other premises where a variety of electrical equipment

is used, including personal computers (PCs) and peripherals. The main performance

characteristics of a personal computer are:

operating voltage U=+220V +-5%;

operating current I=2А;

power consumption P=350 W.

Workplaces must meet the requirements for sanitary rules and regulations for

working with visual display terminals of electronic computers, approved by the

resolution of the Chief State Sanitary Doctor of Ukraine from 10.12.98 № 7 [16].

Table 4.3 - Analysis of hazardous and harmful production factors

Dangerous harmful

production factors

Sources of factors Quantitati

ve

assessmen

t

Regulations

1 2 3 4

Physical

With high or low

humidity

Operation of computers,

printers, scanners or

server equipment for work

3 [18]

Increased voltage of

the electrical network,

the short circuit of

which can occur

through the human

body

Operation of computers,

printers, scanners or

server equipment for work

2 [21]

Insufficient lighting of

the work area

Violation of hygienic

parameters of the

production environment

1 [19]

Physiological:

Neuropsychological

overloads

formulation of the topic;

information research of

subject area;

work performance

documantation

4 [16]

- Physical (static-

sitting);

Violation of organization

of labour conditions of the

work place (continuous

service)

2 [14]

[17]

4. 3 .2 Fire safety

Fire safety when using a computer is provided by:

1) fire prevention system;

2) fire protection system;

3) organizational and technical measures.

Potential sources of ignition can be:

1) sparks and arcs of short circuit;

2) electric spark when closing and opening circuits;

3) overheating from prolonged overload;

4) open fire and combustion products;

5) the presence of substances heated above the autoignition temperature;

6) bit static electricity.

The causes of possible fires and fires can be:

1) malfunction of the electrical installation;

2) design defects of the equipment;

3) short circuit in electrical networks;

4) ignition of combustible materials in the immediate vicinity of the electrical

installation.

4. 3 .3 Electrical safety

The following electrical safety requirements are met at the workplace: PCs,

peripherals and maintenance equipment, electrical wires and cables in terms of

performance and degree of protection correspond to the zone class according to PUE

(rules of electrical installations), have short-circuit current protection equipment and

other emergency modes. The power supply line for PC power supply, peripherals and

maintenance equipment is made as a separate group three-wire network, by laying

phase, neutral operating and neutral protective conductors. The neutral protective

conductor is used for grounding (zeroing) of electric receivers. Plug connections and

electrical sockets in addition to the contacts of the phase and neutral conductors have

special contacts for connecting the neutral protective conductor. The mains sockets

for powering personal PCs are laid on the floor next to the walls in accordance with

the approved equipment placement plan and technical characteristics of the

equipment. Metal pipes and flexible metal sleeves are grounded. Protective

grounding includes grounding devices and a conductor that connects the grounding

device to the equipment to be grounded - the grounding conductor.

4.4 Hygienic requirements for the parameters of the production

environment

4. 4 .1 Microclimate

The microclimate of working premises is the climate of the internal

environment of these premises, which is determined by the combination of

temperature, humidity, speed of air movement acting on the human body. In this

room, work is performed while sitting and does not require dynamic physical

exertion, it corresponds to the category of work 1a. Therefore, the optimal values for

temperature, relative humidity and air mobility for the specified workplace

correspond to DCN 3.3.6.042-99 [18] and are given in table. 4.4:

Table 4.4 - Norms of the microclimate of the working area of the object

Period of the

year

Category of

works

Temperature

C 0

Relative

humidity, %

Air velocity, m / s

Cold Easy-1a 22-24 40-60 0,1

Warm Easy-1a 23-25 40-60 0,1

4. 4 .2 Lighting

Lighting calculation .

For industrial and administrative premises the light factor is accepted not less

than -1/8, in household - 1/10:

√𝑎2 + 𝑏2 · 𝑆𝑏 = (
1

8
÷

1

10
) × 𝑆𝑛, (4.1)

where Sb – area of window opening, m
2
;

Sn – floor area, m
2
.

Sn = a·b = 5·3 = 15 m
2
,

Sage = 1/8·15 = 1,875 m
2
.

We accept a window with the area S = 1,875 m
2
.

The calculation of artificial lighting is made according to the coefficients of

light flux utilization, which determine the flux required to create a given illuminance

in general uniform illumination. The calculation of the number of lamps n is made by

the formula (4.2):

𝑛 =
𝐸∙𝑆∙𝑍∙𝐾

𝐹∙𝑈∙𝑀
 (4.2)

Where n - the number of lamps;

E - normalized illumination of the work surface, determined by the norms -

300 lux ;

S - illuminated area, m
2
 (S = 15 m

2
);

Z - correction factor of the lamp (1.15 for incandescent lamps and DRL; 1.1

for fluorescent lamps) , take equal to 1.1 ;

K - stock factor, taking into account the reduction of illumination during

operation - 1.5 ;

U - utilization factor, depending on the type of lamp, the index of the room,

etc. , 0.575M ;

M is the number of fluorescent lamps in the lamp , 1 unit ;

F - luminous flux - 54 00lm (for LB-80) .

According to the requirements of DBN B.2.5-28: 201 8 [19] visual work in

the operation of a personal computer refers to the work of medium visual accuracy

(category IV, subsection "a"), the illumination of the workplace of the computer

operator must be 300 lux. As a result of substitution of numerical values in the

formula (4.2) number of fixtures:

𝑛 =
300 ∙ 15 ∙ 1.15 ∙ 1.5

5400 ∙ 0.575 ∙ 1
= 2.5 ≈ 3

We accept a lighting installation consisting of three luminaires equipped with

LB type lamps (one - 80 W) with a luminous flux of 5400 lm.

4. 5 Ventilation

In the room where there are computers, air exchange is realized by means of

the natural organized ventilation (ventilation shafts), ie at V of the room> 40 m3 on

one worker natural ventilation is allowed. This method provides Prov and for the

right amount of fresh air that is defined in the building regulations. Ventilation of the

room should also be carried out, depending on weather conditions, the duration

should be at least 10 minutes. The best air exchange is carried out by through

ventilation.

To maintain the optimal temperature in the room in accordance with the

requirements of DBN V 2.5-67: 2013 [20] there is central heating and ventilation.

In the warm season, air conditioning is used.

4. 6 Measures to organize the production environment and prevent

emergencies

1 . Safety measures during the operation of personal computers and peripherals

include:

- proper organization of the workplace and compliance with optimal modes of

work and rest when working with a PC;

- operation of certified equipment;

- observance of electrical safety measures;

- ensuring optimal parameters of the microclimate;

- ensuring rational lighting of the workplace (illumination of the workplace did

not exceed 2/3 of the normal illumination of the room);

- when arranging a room for working with a PC, it is necessary to provide

supply and exhaust ventilation or air conditioning:

2. Safety measures during the operation of other electrical appliances include

compliance with the following rules:

- constantly monitor the condition of the mains, switchboards, switches,

sockets, lamp sockets, as well as mains power cables with which electrical appliances

are connected to the mains;

- constantly monitor the serviceability of the insulation of the power grid and

network cables, preventing their operation with damaged insulation;

- do not pull on the mains cable to pull the plug out of the socket;

- do not cover with furniture, various inventory switches, plug sockets;

- do not connect several powerful electrical devices to one socket at the same

time, which can cause excessive heating of conductors, destruction of their insulation,

melting and ignition of polymeric materials;

- do not leave switched on electrical appliances unattended;

4. 6 .1 Calculation of protective grounding (ensuring the electrical safety of

the building)

According to the classification of premises according to the degree of danger

of electric shock NPAOP 40.1-1.01-97 [19], the room in which all work is carried

out belongs to the first class (without increased danger). When the use of electrical

supply voltage 36 V, 220 V and 360 V. The resistance circuit in the ground should be

no more than 4 ohms.

The sequence of calculation.

1.The required resistance of artificial grounding conductors Rdm.з.:

Rшт.з. =
Rδ.∙Rпр.з.

Rпр.з.−Rδ.
, (4.3)

where Rpr.3. – resistance of natural grounding conductors;

R is the allowable ground resistance.

If natural earthing conductors are absent, then Rшт.з.=Rд.

Substituting the numerical values in formula (4.3), we obtain:

𝑅шт.з. =
4 ∙ 40

40 − 4
≈ 4 Ом

2. Grounding resistance largely depends on the resistivity of the soil ρ, Ohm·m.

The approximate value of the resistivity of the clay is taken as ρ=40 Ohm•m (tabular

value).

3. The calculated specific resistance of the soil, Ррозр, Ohm·m, is

determined respectively for vertical grounding conductors Ррозр.в, and horizontal

Ррозр.г., Ohm·m by the formula:

Ррозр. = ψ ∙ 𝜌 (4.4)

where ψ – the seasonality factor for vertical grounding and climatic zones with

normal soil moisture, taken for vertical grounding ρрозр.в = 1.7 and horizontal

ρрозр.г = 5.5 ohm·m.

Ррозр.в. = 1.7 ∙ 40 = 68 Ом/м

Ррозр.г. = 5.5 ∙ 40 = 220 Ом/м

4. The current resistance of the vertical grounding conductor Rв, Ом, by

(4.5) is calculated..

Rв = (ln
2∙1в

dсТ
+

1

2
∙ ln

4∙t+1в

4∙t−1в
)) (4.5)

 Where lв – the length of the vertical grounding (for pipes - 2−3 m; lв=3

m);

dст – diameter of the rod (for pipes - 0,03−0,05 m; dст=0,05 m);

t – is the distance from the ground to the middle of the ground, which is

determined by f. (4.6);

t = hв +
1в

2
 (4.6)

where ℎв – the depth of laying vertical grounding (0.8 m); then

t = 0.8 +
3

2
= 2,3 m

Rв =
68

2 ∙ π ∙ 3
∙ (ln

2 ∙ 3

0.05
+

1

2
∙ ln

4 ∙ 2.3 + 3

4 ∙ 2.3 − 3
) = 18.5 Оm

5. The theoretical number of vertical grounding n pieces is determined, without

taking into account the utilization factor ηв pcs:

n =
2∙Rв

Rд
=

2∙18.5

4
= 9.25 (4.7)

6. The required number of vertical grounding conductors is determined taking

into account the utilization factor nв, pcs:

nв =
2∙R

Rд∙nв
=

2∙18.5

4∙0.57
= 16.2 ≈ 16 (4.8)

7. The length of the connecting tape of the horizontal grounding lc,

lc = 1.05 ∙ Lв ∙ (nв − 1) (4.9)

where lв – the distance between the vertical grounding, (take l in= 3m);

nb – the required number of vertical grounding.

lc = 1.05 ∙ 3 ∙ (16 − 1) ≈ 48m

8. The resistance to current flow of the horizontal grounding Rg, Ohm is

determined:

Rг =
ρрозр.г

2∙π∙1с
∙ ln

2∙12

dсм∙h
 (4.10)

where dсм – is the equivalent diameter of the strip with a width b, dсм =0,95b, b

= 0,15 m;

ℎ𝑟 – depth of laying of horizontal grounding conductors (0.5 m);

1𝑐 – length of the connecting tape of the horizontal grounding conductor 1с ,

m

Rг =
220

2 ∙ π ∙ 48
∙ ln

2 ∙ 482

0.95 ∙ 0.15 ∙ 0.5
= 8.1 Оm

9. The coefficient of use of the horizontal grounding ηс. is determined.

according to the required number of vertical grounding nv.

The coefficient of use of the connecting strip ηс=0,3 (tabular value).

10. The resulting resistance of the ground electrode is calculated taking into

account the connecting strip:

Rзаг =
Rв∙Rг

Rв∙nc∙Rг∙nв∙nв
 ≤ Rд, (4.11)

Conclusion: this protective grounding will ensure the electrical safety of the

building, as the condition is fulfilled: R total <4 Ohms, namely:

Rзаг =
18.5 ∙ 8.1

18.5 ∙ 0.3 ∙ +8.1 ∙ 16 ∙ 0.57
= 1.9 ≤ Rд

4. 7 Conclusions to the fourth section

As a result of the work, an analysis of working conditions, harmful and

dangerous factors faced by the workers was made. The parameters and certain

characteristics of the work room in the proposed project written in the qualification

work were defined, it is described what measures need to be taken to ensure that the

room meets the necessary standards and is comfortable and safe for the worker.

Recommendations on the organization of the workplace, as well as important

information on fire and electrical safety. The dimensions of the room and the values

of temperature, humidity and air mobility, the required number of lamps and other

parameters, the value of which affects the working conditions of the worker, as well

as instructions on labor protection, safety when working on a computer .

CONCLUSIONS

The purpose of the graduation project is to develop a Android application

"Handbook for Celebration" using the Android Studio software. The application

implements the choice of the best gift for any type of holiday by category, horoscope,

advice, information about the application and a convenient interface.

An analysis of the necessary software was carried out, and methods for

creating the application were also determined. The information considered will be

taken into account when developing a ready-made mobile application.

Developed Android Application “Handbook for Celebration” represents select

of best gift for any type of events and holidays to the user. The application is focused

on holidays and debris that will provide useful information for them, which will help

when choosing the best gift.

In this work it was analyzed working conditions, harmful and dangerous

factors faced by the workers was made. The parameters and certain characteristics of

the work room in the proposed project written in the qualification work were defined,

it is described what measures need to be taken to ensure that the room meets the

necessary standards and is comfortable and safe for the worker.

THE LIST OF REFERENCES

1. Paul Deitel, Harvey Deitel, Alexander Wald. Android 6 for Programmers:

An App-Driven Approach, 3/E. - Deitel & Associates, Inc., New York, 2016. – 460

pp.

2. Dave MacLean, Satya Komatineni, Grant Allen. Pro Android 5. - Springer

Science+Business Media, New York, 2015. – 813 pp.

3. Robert Love. Linux System Programming, Second Edition. - O’Reilly

Media, Sebastopol, 2013. – 456 pp.

4. The Way of Android OS - https://www.npd.com/wps/portal/npd/us/about-

npd/search/?query=Android.

5. Brett Spell. Pro Java 8 Programming. - Springer Science+Business Media,

New York, 2015. – 695 pp.

6. Neil Smyth. Android Studio 3.6 Development Essentials – Java Edition. -

Payload Media, Inc.

7. Одиночкіна С. В. Основи технологій XML (Навчальний посібник) /

Санкт-Петербург: Національний дослідницький університет інформаційних

технологій, механіки та оптики, 2013. – 57 с.

8. Anders Göransson. Efficient Android Threading. - O’Reilly Media, Inc.,

Gravenstein Highway North, Sebastopol, 2014. – 279 pp.

9. Holiday Calendar 2020 - https://play.google.com/store/apps/details?id=com

.apps.calendar&hl=ru.

10, Wallance Jackson. Android Apps for Absolute Beginners; Covering

Android 7. – Lompoc, California, USA, 2017. - 499 pp.

11. Robert Sedgewick, Kevin Wayne. Introduction to Programming in Java.

Second Edition. - Pearson Education, Inc., New York, 2017. – 780 pp.

12. Material Design for Android - https://developer.android.com/guide/topics

/ui/look-and-feel.

13. Law of Ukraine "On labor protection". Come into force by the Resolution

of VP № 2695-XII of 14.10.92, VVP, 1992, ? 49, Article 669. - Access mode:

https://zakon.rada.gov.ua/laws/show/2694-12

14. Law of Ukraine "On Compulsory State Social Insurance against Accidents

at Work and Occupational Diseases That Caused Disability". Order of December 21,

2000 N 2180-III. Access mode: https://zakon.rada.gov.ua/laws/show/1105-14

15. Code of Labor Laws of Ukraine. Approved by Law № 322-VIII of

10.12.71 VVP, 1971. Access mode: https://zakon.rada.gov.ua/laws/show/322-08

16. State sanitary rules and norms of work with visual display terminals of

electronic computers GSanPIN3.3.2.007-98. Approved by the Resolution of the Chief

State Sanitary Doctor of Ukraine of December 10, 1998 N 7. Access mode: www.

URL: https://zakon.rada.gov.ua/rada/show/v0007282-98

17. NPAOP 0.00-7.15-18 "Requirements for safety and health of workers when

working with screen devices". Registered at the Ministry of Justice of Ukraine on

April 25, 2018 at № 508/31960. Access mode: www. URL:

https://zakon.rada.gov.ua/rada/show/v0007282-98

18. Sanitary norms of microclimate of production premises of DCN 3.3.6.042-

99. Resolution No. 42 of December 1, 1999. Access mode:

https://zakon.rada.gov.ua/rada/show/va042282-99

19. DBN V.2.5-28: 2018 "Natural and artificial lighting". Valid from

02/28/2019. Access mode: www. URL:

https://dbn.co.ua/load/normativy/dbn/dbn_v_2_5_28/1-1-0-1188

20. DBN.2.5 -67.2013 "Heating, ventilation and air conditioning". Valid from

01.01.2014. Access mode:

https://drive.google.com/file/d/1yoIHk5OZJ7vPvPbzmhjFAX7DTrH2H3Bo/view

21. NPAOP 40.1-1.01-97 "On approval of the Rules of safe operation of

electrical installations". Registered in the Ministry of Justice of Ukraine on January

13, 1998 for the number 11/2451 Access:

https://zakon.rada.gov.ua/laws/show/z0011-98.

Appendix A

Program listings

File listing MainActivity.java

package com.example.mynewapp;

import android.content.Intent;

import android.os.Bundle;

import android.view.MenuItem;

import android.view.View;

import androidx.annotation.NonNull;

import androidx.appcompat.app.ActionBarDrawerToggle;

import com.google.android.material.navigation.NavigationView;

import androidx.drawerlayout.widget.DrawerLayout;

import androidx.appcompat.app.AppCompatActivity;

import androidx.appcompat.widget.Toolbar;

import android.view.Menu;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.Toast;

import java.util.ArrayList;

import java.util.Arrays;

public class MainActivity extends AppCompatActivity implements

NavigationView.OnNavigationItemSelectedListener, DrawerLayout.DrawerListener

{

private DrawerLayout drawer;

private ListView List;

private String[] array;

private ArrayAdapter<String> Adapter;

private Toolbar toolbar;

private int category_index;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

List = findViewById(R.id.ListView);

array = getResources().getStringArray(R.array.Flower);

Adapter = new ArrayAdapter<>(this, android.R.layout.simple_list_item_1,new

ArrayList<String>(Arrays.asList(array)));

List.setAdapter(Adapter);

toolbar = findViewById(R.id.toolbar);

setSupportActionBar(toolbar);

drawer = findViewById(R.id.drawer_layout);

NavigationView navigationView = findViewById(R.id.nav_view);

navigationView.setNavigationItemSelectedListener(this);

ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(this, drawer, toolbar,

R.string.navigation_drawer_open, R.string.navigation_drawer_close);

drawer.addDrawerListener(toggle);

toggle.syncState();

navigationView.setNavigationItemSelectedListener(this);

List.setOnItemClickListener(new AdapterView.OnItemClickListener()

{

@Override

public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

Intent intent = new Intent(MainActivity.this, Text_Content_Activity_2.class);

intent.putExtra("category", category_index);

intent.putExtra("position", position);

startActivity(intent);

}

});

// ***

// ***

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// ***

getMenuInflater().inflate(R.menu.main, menu);

toolbar.setTitle(R.string.Flower);

return true;

}

@Override

public boolean onNavigationItemSelected(@NonNull MenuItem menuItem) {

int id = menuItem.getItemId();

if (id == R.id.id_Flower) {

toolbar.setTitle(R.string.Flower);

array = getResources().getStringArray(R.array.Flower); //***

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

category_index = 0;

}

if (id == R.id.id_Jewelry)

{

toolbar.setTitle(R.string.Jewelry);

array = getResources().getStringArray(R.array.Jewelry);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

Toast.makeText(this, " Jewelry_present ", Toast.LENGTH_SHORT).show();

category_index = 1;

}

if (id == R.id.id_Toys)

{

toolbar.setTitle(R.string.Toys);

array = getResources().getStringArray(R.array.Toys);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

Toast.makeText(this, " Toys ", Toast.LENGTH_SHORT).show();

category_index = 2;

}

if (id == R.id.id_ForParents)

{

toolbar.setTitle(R.string.ForParents);

array = getResources().getStringArray(R.array.ForParents);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

category_index = 3;

Toast.makeText(this, " For Parents ", Toast.LENGTH_SHORT).show();

}

if (id == R.id.id_Information)

{

toolbar.setTitle(R.string.Information);

array = getResources().getStringArray(R.array.Information);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

Toast.makeText(this, " Information ", Toast.LENGTH_SHORT).show();

category_index = 3;

}

if (id == R.id.id_Advice)

{

toolbar.setTitle(R.string.Advice);

array = getResources().getStringArray(R.array.Advice);

Adapter.clear();

Adapter.addAll(array);

Adapter.notifyDataSetChanged();

Toast.makeText(this, " Advice ", Toast.LENGTH_SHORT).show();

category_index = 4;

}

// ***

return true;

}

File listing Text_Content_Activity.java

package com.example.mynewapp;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import androidx.annotation.Nullable;

import androidx.appcompat.app.AppCompatActivity;

public class Text_Content_Activity extends AppCompatActivity {

private int category = 0;

private int position = 0;

@Override

protected void onCreate(@Nullable Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.text_content);

reciveIntent();

}

private void reciveIntent()

{

Intent i = getIntent();

if(i != null)

category = i.getIntExtra("category",0);

position= i.getIntExtra("position" , 0);

}

}

File listing Text_Content_Activity_2.java

package com.example.mynewapp;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.text.method.ScrollingMovementMethod;

import android.widget.TextView;

public class Text_Content_Activity_2 extends AppCompatActivity {

TextView textView;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.text_content);

textView = (TextView) findViewById(R.id.text_main_content);

textView.setMovementMethod(new ScrollingMovementMethod());

}

}

File listing strings.xml

<resources>

<string name="txtCredits">Support: click

here</string>

<string name="app_name">Handbook for Celebration </string>

<string name="navigation_drawer_open">Open navigation drawer</string>

<string name="navigation_drawer_close">Close navigation drawer</string>

<string name="nav_header_title">Handbook for Celebration </string>

<string name="nav_header_subtitle">android.studio@android.com</string>

<string name="nav_header_desc">Navigation header</string>

<string name="action_settings">Settings</string>

<string name="Flower">Flower</string>

<string name="Jewelry">Jewelry</string>

<string name="Toys">Toys</string>

<string name="ForParents"> For Parents</string>

<string name="Information">Information</string>

<string name="Advice">Advice</string>

<string name="Flower_1">***</string>

<string name="Flower_2">***</string>

<string name="Flower_3">***</string>

<string name="Flower_4">***</string>

<string name="Flower_5">***</string>

<string name="Flower_6">***</string>

</resources>

File listing arrays.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string-array name="Flower">

<item> Flower for the Birthday </item>

<item> Flower for the Celebration </item>

<item> Flower for the Wedding </item>

<item> Flower for the Anniversary</item>

<item> Flower for the 14th of February</item>

<item> Flower for the 8th of March </item>

<item> Flower for the Victory day</item>

<item> Flower for the 1th of September </item>

</string-array>

<string-array name="Jewelry">

<item> Jewelry </item>

<item> Jewelry for the Birthday </item>

<item> Wedding jewelry </item>

<item> Best jewelry for the Parents </item>

<item> Business jewelry </item>

<item> Jewelry for the Kids </item>

<item> Jewelry for the Friendship </item>

<item> Jewelry for the Party </item>

</string-array>

<string-array name="Toys">

<item> Toys </item>

<item> For Kids </item>

<item> For Girls </item>

<item> For Boys </item>

<item> General </item>

</string-array>

<string-array name="ForParents">

<item> For Parents </item>

<item> For Mother </item>

<item> For Father </item>

<item> For all </item>

</string-array>

<string-array name="Information">

<item> Information</item>

<item> About the app </item>

<item> Spring Horoscope</item>

<item> Summer Horoscope </item>

<item> Autumn Horoscope </item>

<item> Winter Horoscope </item>

</string-array>

<string-array name="Advice">

<item> Advice </item>

<item> About all Category </item>

</string-array>

</resources>

File listing activity_main_drawer.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

tools:showIn="navigation_view">

<group android:checkableBehavior="single">

<item

android:id="@+id/id_Flower"

android:icon="@mipmap/ic_fl"

android:title="@string/Flower" />

<item

android:id="@+id/id_Jewelry"

android:icon="@mipmap/ic_jw"

android:title="@string/Jewelry" />

<item

android:id="@+id/id_Toys"

android:icon="@mipmap/ic_toys"

android:title="@string/Toys" />

<item

android:id="@+id/id_ForParents"

android:icon="@mipmap/ic_parents"

android:title="@string/ForParents" />

</group>

<item android:title="Helpful advice">

<menu>

<item

android:id="@+id/id_Information"

android:icon="@drawable/ic_menu_share"

android:title="@string/Information" />

<item

android:id="@+id/id_Advice"

android:icon="@drawable/ic_menu_send"

android:title="@string/Advice" />

</menu>

</item>

</menu>

File listing text_content.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:orientation="vertical" android:layout_width="match_parent"

android:layout_height="match_parent">

<ScrollView

android:layout_width="match_parent"

android:layout_height="214dp"

android:layout_marginStart="8dp"

android:layout_marginLeft="8dp"

android:layout_marginTop="8dp"

android:layout_marginEnd="8dp"

android:background="@drawable/side_nav_bar">

<LinearLayout

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical">

<LinearLayout

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="horizontal">

<ImageView

android:layout_width="3300dp"

android:layout_height="match_parent"

android:layout_weight="1"

android:src="@drawable/flower" />

</LinearLayout>

</LinearLayout>

</ScrollView>

<TextView

android:id="@+id/text_main_content"

android:layout_width="match_parent"

android:layout_height="434dp"

android:scrollbars = "vertical"

android:text="@string/Flower_1" />

<LinearLayout

android:layout_width="match_parent"

android:layout_height="100dp"

android:layout_marginTop="10dp"

android:background="@drawable/side_nav_bar"

android:orientation="horizontal"></LinearLayout>

</LinearLayout>

File listing AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.mynewapp">

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="Handbook for Celebration"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/AppTheme">

<activity android:name=".Text_Content_Activity_2"></activity>

<activity

android:name=".MainActivity"

android:label="Handbook for Celebration"

android:theme="@style/AppTheme.NoActionBar">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

Appendix B

Presentation slides

Bachelor's thesis project on the topic:

Android application "Handbook for Celebration"

Student: Babayeva M.O.

Head of thesis : Shchebrakov E.V.

1

Figure B.1 - Main slide

Figure B.2 – Goal of the project

Figure B.3 - Structure

Figure B.4 - Function description

Figure B.5 - string.xml code fragment

Figure B.6 – MainActivity.java code fragment

Figure B.7 – Code continue fragment MainActivity.java

Figure B.8 – The main application menu

Figure B.9 - Flower & Jewelry – categories

Figure B.10 – Toys & For Parents – categories

Figure B.11 – Information & Advice – categories

Figure B.12 – Conclusion

